Reproducibility in Evaluating

Reinforcement Learning Algorithms

Khimya Khetarpal*

Zafarali Ahmed* Andre Cianflone Riashat Islam

Joelle Pineau

Reasoning and Learning Lab Mila, McGill University

> TLDR: We highlight challenges in comparing RL algorithms in terms of evaluation and propose an evaluation pipeline decoupled from training code.

Why is comparing results in reinforcement learning difficult?

Implementation Details

- Libraries have different quirks for implementing.
- details can cause massive performance differences [2, 3]
- differs from algorithm description.
- Optimization algorithm and policy coupled together.

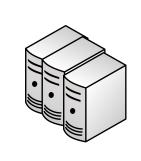
Training Details

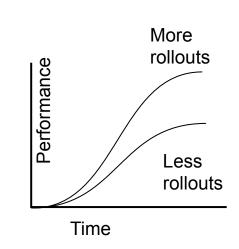
Compute Power

Different labs have access to different amount of computer power

Number of rollouts used per iteration for updates.

These can skew the learning curves that measure efficiency and rewards.





Evaluation Details

Score / Discounted Return / Reward

Inconsistent measures of performance between results.

Sample Efficiency

Sample efficiency is not a good measure of how good an algorithm performs unless training conditions are constant.

Top Seeds / Best Seeds

Only reporting the best seeds found can skew results in your favour. [4]

Stochasticity of policy

Explicitly stating if the policy used was stochastic or not.

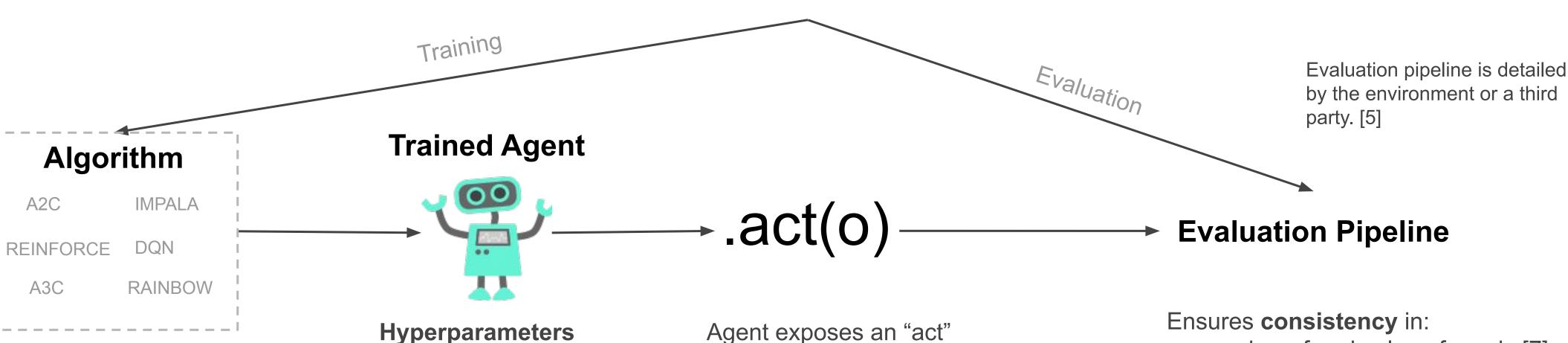
Environment start states

Some labs may not have access to the conditions of the environment that make evaluations unfair.

Moving toward standard evaluation pipelines

Config Script

Environment



are released to allow fair training and comparison. [6] Agent exposes an "act" function which takes an observation and returns an action in a **framework** independent way!

- number of and value of seeds [7]
- Metric to record

This allows papers to compare results on the evaluation phase in a fair way.

- [3] Tucker et al. "The Mirage of Action-Dependent Baselines in Reinforcement Learning". 2018
- [4] Shimon et al. "Protecting against evaluation overfitting in empirical reinforcement learning." 2011.
- [5] Bellemare et al. "The arcade learning environment: An evaluation platform for general agents." 2013
- [6] Riedmiller et al. "Evaluation of policy gradient methods and variants on the cart-pole benchmark." 2007.
- [7] Zhang et al. "A Study on Overfitting in Deep Reinforcement Learning." 2018

^[1] Agent image from Wikimedia Commons

^[2] Henderson et al. "Deep reinforcement learning that matters". 2018