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Research Goals
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How should an AI agent efficiently represent, learn and use 
knowledge of the world in continual tasks?



    Temporal Abstraction: Options Framework
• Definition

    Let S, A be the set of states and actions. A Markov option              is a triple:

(Iω ⊆ S πω : S × A → [0, 1] βω : S → [0, 1])

ω ∈ Ω

, ,
Initiation set Intra option policy Termination condition

πω(s, a)
Iω

βω(s)

πΩ : S × Ω → [0,1]with a policy over options
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•                set of states aka preconditions

•                  probability of taking an action               in state           when following the option

•                probability of terminating option       upon entering state 

a ∈ A

sω
ωs ∈ S

• Example 


• Robot navigating in a house: when you come across a closed door (     ), open the 
door (      ), until the door has been opened (     ) 

Iω
βωπω



Can we learn such temporal abstractions?
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• Bacon, Harb, and Precup, 2017 proposed the option-critic framework which provides 
the ability to learn a set of options 



Can we learn such temporal abstractions?

J = EΩ,θ,ω[∑∞
t=0 γtrt+1 |s0, ω0]
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• Bacon, Harb, and Precup, 2017 proposed the option-critic framework which provides 
the ability to learn a set of options 

• Optimize directly the discounted return, averaged over all the trajectories starting at a 
designated state and option



Can we learn such temporal abstractions?
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• Bacon, Harb, and Precup, 2017 proposed the option-critic framework which provides 
the ability to learn a set of options 

• Optimize directly the discounted return, averaged over all the trajectories starting at a 
designated state and option

Assumption: All options are available in all states 
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Learning options with interest functions 

Learning options which are specialized in situations of specific interest  
can be leveraged to learn meaningful, interpretable and reusable temporal 

abstractions.

Hypothesis: 



   

• Break the assumption that all options are present in all states. 

• Build-in a form of attention mechanism 
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Learning options with interest functions 



   

• Break the assumption that all options are present in all states. 

• Build-in a form of attention mechanism 

• Definition: Interest Function                               generalizes the notion of initiation 
sets, and is an indication of the extent to which an option       is  applicable in a state 
s.  

• Here we consider differentiable interest functions parameterized with z. 

Iω,z : S × Ω ⟶ IR+

ω
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Learning options with interest functions 



πIω,z
(ω |s) = Iω,z(s)πΩ(ω |s)/ ∑

ω′ 

Iω′ ,z(s)πΩ(ω′ |s)
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     is the policy over optionsπΩ(ω |s)
     is the Interest functionIω,z(s)

The value of             modulates the probability of option   being sampled in state    by a 
 policy over options                  , resulting in an interest policy over option defined as:

ωIω,z(s) s
πΩ(ω |s)

Interest-Option-Critic



VΩ(s) = ∑
ω

πIω,z
(ω |s)QΩ,θ(s, ω)

The state-value function over options that have interest functions is now defined as:

where         is the option-value function parameterized by    , and the probability of 
option    being sampled in state    is defined as:

QΩ,θ
ω

θ
s
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Interest-Option-Critic

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as



∂QΩ(s, ω)
∂z

=
∂
∂z {∑

a

πω,θ(a |s)QU(s, ω, a)}
Taking the derivation w.r.t. z
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Interest-Option-Critic

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as



where is the value of executing an action in the context of a
state-option pair defined as:

QU(s, ω, a) = r(s, a) + γ∑
s′ 

P(s′ |s, a)U(ω, s′ )

QU : S × Ω × A ℝ
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Interest-Option-Critic

∂QΩ(s, ω)
∂z

=
∂
∂z {∑

a

πω,θ(a |s)QU(s, ω, a)}
Taking the derivation w.r.t. z

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as



where is the value of executing an action in the context of a
state-option pair defined as:

QU(s, ω, a) = r(s, a) + γ∑
s′ 

P(s′ |s, a)U(ω, s′ )

U(ω, s′ ) = (1 − βω,ν(s′ ))QΩ(s′ , ω) + βω,ν(s′ )VΩ(s′ )

is the option-value function upon arrival in a state:where

QU : S × Ω × A ℝ

U : S × Ω ℝ
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Interest-Option-Critic

∂QΩ(s, ω)
∂z

=
∂
∂z {∑

a

πω,θ(a |s)QU(s, ω, a)}
Taking the derivation w.r.t. z

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as



Main Result : Interest Function Gradient Updates

Given a set of Markov options with stochastic, differentiable interest functions, the 
gradient of the expected discounted return with respect to    at             is:

∑
s′ ,ω′ 

̂μΩ(s′ , ω′ |s, ω)βω,ν(s′ )
∂πIω,z

(ω′ |s′ )

∂z
QΩ(s′ , ω′ )

(s, ω)z

̂μΩ(s′ , ω′ |s, ω)where                          is the discounted weighting of the state-option pairs along 
trajectories starting from         sampled from the sampling distribution determined by  (s, ω) πIω,z

(ω |s)
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Interest-Option-Critic
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Interest-Option-Critic

Intuitively, the gradient update to    can be interpreted as increasing the interest in an option which 
terminates in states with good value. It links initiation and termination, which is natural.

z



• The agent initially would consider that all options are available everywhere.  

• As learning progresses, we would like the emerging options to be specialized over different 
state-space regions.  

• We derive the policy gradient theorem for interest functions, intra-option policy and the 
termination function. 

• TL;DR     all three components of options are parameterized and learned

18

(Iω,z : S × Ω → ℝ+ πω,θ : S × A → [0, 1] βω,ν : S → [0, 1]),  ,
Interest Functions Intra option policy Termination condition

Interest-Option-Critic
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Experimental Results

• Are options with interest functions useful in a single task? 

• Do interest functions facilitate learning reusable options? 

• Do interest functions lead to better interpretability of the learned options?
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Four Rooms Domain
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Goal  

Are interest functions useful in a single task?

• 4 primitive actions, L, R, U, D 

• Stochastic actions 

• The discount factor is 0.99 

• The reward is +50 at the goal and 0 
otherwise. 
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22

Goal  

Are interest functions useful in a single task?

• 4 primitive actions, L, R, U, D 

• Stochastic actions 

• The discount factor is 0.99 

• The reward is +50 at the goal and 0 
otherwise. 



23

Four Rooms Domain

Option 1 Option 2 Option 3 Option 4

In
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Visualization of Interest Functions at the end of 500 episodes in a task with the goal in the east hallway. 

Options learned with interest functions emerge with specific interest in different regions of the state space.


Visualization of Termination conditions shows that they emerge complimentary to interest of each options.

Are interest functions useful in a single task?
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Continuous Control: Mujoco
• Point mass agent (blue)  

• Must navigate to the goal (green) 

• State space: x, y coordinates of the agent 

• Action space: Force applied in x, y 
directions 

• Reward: +1 upon successful navigation to 
goal, 0 otherwise 

Are interest functions useful in a single task?
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Continuous Control: Mujoco
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3D Visual Environment: MiniWorld
• Oneroom task 

• Agent must navigate to a randomly  placed 
red block in a closed room 

• State space: 3-channel RGB image 

• Action space: 8 discrete actions, max time 
steps per episode: 180 

• Reward:  1.0 - 0.2 * (step_count / 
max_episode_steps) 

Are interest functions useful in a single task?
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Experimental Results

• Are options with interest functions useful in a single task? 

• Do interest functions facilitate learning reusable options? 

• Do interest functions lead to better interpretability of the learned options?
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Do interest functions facilitate learning reusable options?

Reward: +1 upon successful navigation to goal, 0 
otherwise, equi-rewarding goals, goal changes after 
150 iterations
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Do interest functions facilitate learning reusable options?

Reward: +1 upon successful navigation to goal, 0 
otherwise, equi-rewarding goals, goal changes after 
150 iterations



31

TMaze

Time Option 0 Option 1 

Time 

I ω
0(s

)
I ω

1(s
)

T = 0 T = 150 T = 200 T = 480 

Do interest functions lead to better interpretability of learned options?
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Do interest functions facilitate learning reusable options?

Reward: +1 upon successful navigation to goal, 0 
otherwise, equi-rewarding goals, goal changes after 
150 iterations

Reward: 1.0 - 0.2 * (step_count / 
max_episode_steps), agent needs to generalize to 
unseen blue box after 150 iterations
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Do interest functions facilitate learning reusable options?

Reward: 1.0 - 0.2 * (step_count / 
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MiniWorld
Do interest functions lead to better interpretability of learned options?
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Do interest functions facilitate learning reusable options?

Reward: +1 upon successful navigation to goal, 0 
otherwise, equi-rewarding goals, goal changes after 
150 iterations

Reward: 1.0 - 0.2 * (step_count / 
max_episode_steps), agent needs to generalize to 
unseen blue box after 150 iterations

Reward: magnitude of the velocity in forward 
direction, after 150 iterations agent is rewarded to 
move backward as fast as possible with  |v|
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Do interest functions facilitate learning reusable options?

Reward: magnitude of the velocity in forward 
direction, after 150 iterations agent is rewarded to 
move backward as fast as possible with  |v|

Reward: +1 upon successful navigation to goal, 0 
otherwise, equi-rewarding goals, goal changes after 
150 iterations

Reward: 1.0 - 0.2 * (step_count / 
max_episode_steps), agent needs to generalize to 
unseen blue box after 150 iterations
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HalfCheetah
Do interest functions lead to better interpretability of learned options?
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Link to videos

Do interest functions lead to better interpretability of learned options?

https://sites.google.com/view/optionsofinterest/home
https://sites.google.com/view/optionsofinterest/home
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HalfCheetah
Interest as an Attention Mechanism
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Discussion & Future Directions

• Introduced the notion of interest functions for options, which generalize initiation sets in 
a way which allows graceful learning 

• Our approach is able to learn options which are specialized, and therefore are able to 
both learn faster in a single task as well as quickly adapt to changes in the task. 

• To some extent, the interest functions learnt are able to override termination 
degeneracies as well 

• Limitation: The agent optimizes a task-based external reward. Interest functions could 
similarly be learned driven by intrinsic task-agnostic rewards



Thank you



Extra Slides
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(Iω,z : S × Ω → ℝ+ πω,θ : S × A → [0, 1] βω,ν : S → [0, 1]),  ,
Interest Functions Intra option policy Termination condition

Interest-Option-Critic
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Four Rooms Domain

Option 1 Option 2 Option 3 Option 4
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Options learned in OC terminate almost everywhere as all options are applicable in all states.

Are interest functions useful in a single task?
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∂QΩ(s, ω)
∂z

=
∂
∂z {∑

a

πω,θ(a |s)QU(s, ω, a)}
Taking the derivation w.r.t. z
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Interest-Option-Critic

= ∑
a

πω,θ(a |s)∑
s′ 

γP(s′ |s, a){(1 − βω,ν(s′ ))
∂QΩ(s′ , ω)

∂z
+ βω,ν(s′ )

∂VΩ(s′ )
∂z }

VΩ(s) = ∑
ω

πIω,z
(ω |s)QΩ(s, ω)

∂VΩ(s′ )
∂z

= ∑
ω

(
∂πIω,z

(ω |s′ )

∂z
QΩ(s′ , ω) + πIω,z

(ω |s′ )
∂QΩ(s′ , ω)

∂z )

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as



∂QΩ(s, ω)
∂z

=
∂
∂z {∑

a

πω,θ(a |s)QU(s, ω, a)}
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Interest-Option-Critic

= ∑
a

πω,θ(a |s)∑
s′ 

γP(s′ |s, a){(1 − βω,ν(s′ ))
∂QΩ(s′ , ω)

∂z
+ βω,ν(s′ )

∂VΩ(s′ )
∂z }

= ∑
a

πω,θ(a |s)∑
s′ 

γP(s′ |s, a)∑
ω′ 

βω,ν(s′ )
∂πIω,z

(ω′ |s′ )

∂z
QΩ(s′ , ω′ ) + ∑

s′ 
∑
ω′ 

(∑
a

πω,θ(a |s)γP(s′ |s, a)((1 − βω,ν(s′ )) + βω,ν(s′ )πIω,z
(ω′ |s′ ))) ∂QΩ(s′ , ω′ )

∂z

P(1)
γ (s′ , ω′ |s, ω) = ∑

a

πω,θ(a |s)γP(s′ |s, a)((1 − βω,ν(s′ ))1ω=ω′ + βω,ν(s′ )πIω,z
(ω′ |s′ ))

In the above equation, one-step discounted transition probability in the augmented space is given as

∂QΩ(s, ω)
∂z

= ∑
s′ ,ω′ 

̂μΩ(s′ , ω′ |s, ω)βω,ν(s′ )
∂πIω,z

(ω′ |s′ )

∂z
QΩ(s′ , ω′ )

……

……

……


