Hierarchical Reinforcement Learning

Temporal Abstraction in RL

Khimya Khetarpal

Reasoning and Learning Lab Mila - McGill University

Mila 🐯 McGill

Pick up boxes

Navigate to destination

Stack boxes

Tasks at hand could be solved quickly and efficiently with *skills*

Each *skill* can take *different* number of time steps

The ability to abstract knowledge temporally over many different time scales is seamlessly integrated in human decision making!

Reinforcement Learning

At each time step, the *agent*:

- Executes action A_t
- Receives observation O_t
- Receives reward R_t

At each time step, the *environment*:

- Receives action
- Emits observation O_{t+1}
- Emits scalar reward R_{t+1}

Learning Values

Why Temporal Abstraction

Planning

- Generate shorter plans
- Provides robustness to model errors
- Improves sample complexity

Learning

- Improve exploration by taking shortcuts in the environment
- Facilitates Off-Policy learning
- Improves efficiency/learning speed
- Helps in transfer learning

The Options Framework

The Options Framework

Options (Sutton, Precup, and Singh, 1999) formalize the idea of temporally extended actions also known as **skills.**

Options Framework

• Definition

Let S, A be the set of states and actions. A Markov option $\omega \in \Omega$ is a triple:

$$(\mathbf{I}_{\omega} \subseteq \mathbf{S} \text{ , } \pi_{\omega} : \mathbf{S} \times \mathbf{A} \rightarrow [\mathbf{0}, \mathbf{1}] \text{ , } \beta_{\omega} : \mathbf{S} \rightarrow [\mathbf{0}, \mathbf{1}])$$

Initiation set Intra option policy Termination condition

- I_{ω} set of states aka preconditions
- $\pi_{\omega}(s, a)$ probability of taking an action $a \in A$ in state $s \in S$ when following the option ω
- $\beta_{\omega}(s)$ probability of terminating option ω upon entering state *S*

with a policy over options $\pi_{\Omega} : S \times \Omega \rightarrow [0,1]$

Options Framework

• Definition

Let S, A be the set of states and actions. A Markov option $\omega \in \Omega$ is a triple:

$$(\mathbf{I}_{\omega} \subseteq \mathbf{S} \text{ , } \pi_{\omega} : \mathbf{S} \times \mathbf{A} \rightarrow [\mathbf{0}, \mathbf{1}] \text{ , } \beta_{\omega} : \mathbf{S} \rightarrow [\mathbf{0}, \mathbf{1}])$$

Initiation set Intra option policy Termination condition

- I_{ω} set of states aka preconditions
- $\pi_{\omega}(s, a)$ probability of taking an action $a \in A$ in state $s \in S$ when following the option ω

• $\beta_{\omega}(s)$ probability of terminating option ω upon entering state *s*

with a policy over options $\pi_{\Omega} : S \times \Omega \rightarrow [0,1]$

• Example

• Robot navigating in a house: when you come across a closed door (I_{ω}), open the door (π_{ω}), until the door has been opened (β_{ω})

Planning with Options

4 stochastic primitive actions left fight Fail 33% of the time down

8 multi-step options (to each room's 2 hallways)

Planning with Options

8 multi-step options (to each room's 2 hallways)

Sutton, Precup & Singh 1999

Planning with Options

8 multi-step options (to each room's 2 hallways)

Sutton, Precup & Singh 1999

Potential Applications:

- Planning with stocks
- Planning with assets asset management
- Clinical Domains [Y. Shahar: A framework for knowledge-based temporal abstraction]

Can we learn such temporal abstractions?

- Bacon, Harb, and Precup, 2017 proposed the option-critic framework which provides the ability to *learn* a set of options
- Optimize directly the discounted return, averaged over all the trajectories starting at a designated state and option

$$J = E_{\Omega,\theta,\omega} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \,|\, s_0, \omega_0 \right]$$

Actor-Critic Architecture

Actor-Critic Architecture

Option-Critic Architecture

Option-Critic with Deep RL

Option-Critic with Deep RL

Option 1: downward shooting sequences Option 2: upward shooting sequences

- Key Idea:
 - Non deterministic finite state machines
 - Transitions invoke lower level machines

- Key Idea:
 - Non deterministic finite state machines
 - Transitions invoke lower level machines

- A Machine:
 - Is a partial policy
 - Has four states: Call/Stop/Choice/A

- Upon encountering an obstacle:
 - Machine enters a Choice state
 - Follow-wall Machine
 - Back-off Machine
- A HAM learns a policy to decide which machine is optimal to call

Feudal Learning

Feudal Learning

- Reward Hiding:
 - The managers provide subtasks g for sub-managers
 - Managers only reward the actions if the sub-manager achieves g, irrespective of what the overall goal of the task is.
 - Low-level managers learn how to achieve low-level goals even if these do not exactly correspond together to the highest level goal.

Dayan & Hinton 1993

• Reward Hiding:

- The managers provide subtasks g for sub-managers
- Managers only reward the actions if the sub-manager achieves g, irrespective of what the overall goal of the task is.
- Low-level managers learn how to achieve low-level goals even if these do not exactly correspond together to the highest level goal.

• Information Hiding:

- Managers only know the state of the system at the granularity of their own choices of tasks.
- Information is hidden both ways, upwards and downwards, in terms of the choice of sub-tasks chosen to meet the main goal.
- Managers only reward the actions if the sub-manager achieves irrespective of what the overall goal of the task is.

Dayan & Hinton 1993

FeUdal Networks (FUN) for HRL

FeUdal Networks (FUN) for HRL

- Key Insights:
 - Manager chooses a subgoal direction that maximizes reward
 - Worker selects actions that maxim cosine similarity
 - FuN aims to represent sub-goals as directions in latent state space
 - Subgoals = Meaning behaviours ; Subgoals as actions

Vezhnevets et. al 2017

FeUdal Networks (FUN) for HRL

Moving towards truly scalable RL

"Stop learning tasks, start learning skills." - Satinder Singh, NeurIPS 2018

- MAXQ
- HIRO
- h-DQN
- Meta Learning with Shared Hierarchies
- To be completed

Demo

Questions

Extra Slides

Option-Critic

Formulation

All options are available in all states

The option value function is defined as

$$Q_{\Omega}(s,\omega) = \sum_{a} \pi_{\omega,\theta}(a \mid s) Q_{U}(s,\omega,a)$$

where $Q_U: S \times \Omega \times A \to \mathbb{R}$ is the value of executing an action in the context of a state-option pair defined as:

$$Q_U(s, \omega, a) = r(s, a) + \gamma \sum_{s'} P(s' | s, a) U(\omega, s')$$

Option-Critic

Formulation

All options are available in all states

The option value function is defined as

$$Q_{\Omega}(s,\omega) = \sum_{a} \pi_{\omega,\theta}(a \mid s) Q_{U}(s,\omega,a)$$

where $Q_U: S \times \Omega \times A \rightarrow \mathbb{R}$ is the value of executing an action in the context of a state-option pair defined as:

$$Q_U(s, \omega, a) = r(s, a) + \gamma \sum_{s'} P(s' \mid s, a) U(\omega, s')$$

where $U: S \times \Omega \rightarrow \mathbb{R}$ is the option-value function upon arrival in a state:

$$U(\omega, s') = (1 - \beta_{\omega, \nu}(s'))Q_{\Omega}(s', \omega) + \beta_{\omega, \nu}(s')V_{\Omega}(s')$$