
Hierarchical Reinforcement Learning

Khimya Khetarpal
Reasoning and Learning Lab 

Mila - McGill University

Temporal Abstraction in RL



Consider an autonomous robot in a warehouse

�2 Image Source: Boston Dynamics Robot Handle

https://www.youtube.com/watch?v=r3L2e_n4tDc


Consider an autonomous robot in a warehouse

�3

Pick up boxes

Image Source: Boston Dynamics Robot Handle

Navigate to destination Stack boxes

Tasks at hand could be solved quickly and efficiently with skills 

https://www.youtube.com/watch?v=r3L2e_n4tDc


Consider an autonomous robot in a warehouse

�4

Pick up boxes

Image Source: Boston Dynamics Robot Handle

Navigate to destination Stack boxes

Scan room Identify Objects Find Box

Find LocationReach Box

Obstacle Avoid Obstacle Detect Move Identify OBJ Find Box Place Box

Reach Box Find Location

                    

                    

                    

Each skill can take different number of time steps 

https://www.youtube.com/watch?v=r3L2e_n4tDc


Consider an autonomous robot in a warehouse

�5

Pick up boxes

Image Source: Boston Dynamics Robot Handle

Navigate to destination Stack boxes

Scan room Identify Objects Find Box

Find LocationReach Box

Obstacle Avoid Obstacle Detect Move Identify OBJ Find Box Place Box

Reach Box Find Location

                    

                    

                    

The ability to abstract knowledge temporally over many different 
time scales is seamlessly integrated in human decision making!  

https://www.youtube.com/watch?v=r3L2e_n4tDc


Reinforcement Learning

�6

At each time step, the agent: 

• Executes action  

• Receives observation  

• Receives reward 

At

Ot

At each time step, the environment: 

• Receives action  

• Emits observation  

• Emits scalar reward 

Ot+1

Rt

Rt+1



�7

Policy  π(a |s)

Vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]Value Function  

Discount Factor Immediate Reward Discounted Future Value

Predictions : Value Functions



�8

Policy  π(a |s)

Vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]Value Function  

Discount Factor Immediate Reward Discounted Future Value

Temporal Difference Learning

δt = Rt+1 + γV(St+1) − V(St)

V(St) ← V(St) + α(Rt+1 + γV(St+1) − V(St))

Temporal-difference error:

wt+1 = wt + αδt ∇wVw(St)Learning rule for parameterized value functions

Learning Values



Why Temporal Abstraction

�9

Planning 

• Generate shorter plans 

• Provides robustness to model errors 

• Improves sample complexity 

Learning 

• Improve exploration by taking shortcuts in the environment 

• Facilitates Off-Policy learning 

• Improves efficiency/learning speed 

• Helps in transfer learning



The Options Framework

�10



The Options Framework
Options (Sutton, Precup, and Singh, 1999) formalize the idea of temporally extended 
actions also known as skills. 

�11 Sutton, Precup & Singh 1999



    Options Framework
• Definition

    Let S, A be the set of states and actions. A Markov option              is a triple:

(Iω ⊆ S πω : S × A → [0, 1] βω : S → [0, 1])

ω ∈ Ω

, ,
Initiation set Intra option policy Termination condition

πω(s, a)
Iω

βω(s)

πΩ : S × Ω → [0,1]with a policy over options

�12

•                set of states aka preconditions

•                  probability of taking an action               in state           when following the option

•                probability of terminating option       upon entering state 

a ∈ A

sω
ωs ∈ S

Sutton, Precup & Singh 1999



    Options Framework
• Definition

    Let S, A be the set of states and actions. A Markov option              is a triple:

(Iω ⊆ S πω : S × A → [0, 1] βω : S → [0, 1])

ω ∈ Ω

, ,
Initiation set Intra option policy Termination condition

πω(s, a)
Iω

βω(s)

πΩ : S × Ω → [0,1]with a policy over options

�13

•                set of states aka preconditions

•                  probability of taking an action               in state           when following the option

•                probability of terminating option       upon entering state 

a ∈ A

sω
ωs ∈ S

• Example 


• Robot navigating in a house: when you come across a closed door (     ), open the 
door (      ), until the door has been opened (     ) 

Iω
βωπω

Sutton, Precup & Singh 1999



Planning with Options

�14 Sutton, Precup & Singh 1999



�15

Initial Values Iteration #1 Iteration #2

Primitive actions 

Planning with Options

Sutton, Precup & Singh 1999



�16

Initial Values Iteration #1 Iteration #2

Primitive actions 

Hallway Options

Planning with Options

Sutton, Precup & Singh 1999

Initial Values Iteration #1 Iteration #2



�17

Planning with Options : Discussion

Potential Applications: 

• Planning with stocks 

• Planning with assets - asset management 

• Clinical Domains [Y. Shahar: A framework for knowledge-based temporal abstraction]



Can we learn such temporal abstractions?

J = EΩ,θ,ω[∑∞
t=0 γtrt+1 |s0, ω0]

�18

• Bacon, Harb, and Precup, 2017 proposed the option-critic framework which provides 
the ability to learn a set of options 

• Optimize directly the discounted return, averaged over all the trajectories starting at a 
designated state and option

Bacon, Harb & Precup 2017



Actor-Critic Architecture

�19



Actor-Critic Architecture

�20

Decides how the agent acts

Provides feedback to improve the actor



Option-Critic Architecture

�21

Parameterize internal policies

Parameterize termination conditions

Bacon, Harb & Precup 2017



Option-Critic with Deep RL

�22 Bacon, Harb & Precup 2017



Option-Critic with Deep RL

�23 Bacon, Harb & Precup 2017



Hierarchical Abstract Machines (HAMs)



Hierarchical Abstract Machines (HAMs)
• Key Idea:  

• Non deterministic finite state machines 

• Transitions invoke lower level machines

Parr & Russell, 1998



Hierarchical Abstract Machines (HAMs)
• Key Idea:  

• Non deterministic finite state machines 

• Transitions invoke lower level machines 

• A Machine:  

• Is a partial policy 

• Has four states: Call/Stop/Choice/Action State 

Parr & Russell, 1998



Hierarchical Abstract Machines (HAMs)

• Upon encountering an obstacle: 

• Machine enters a Choice state 

• Follow-wall Machine 

• Back-off Machine 

• A HAM learns a policy to decide which machine is optimal to call

Parr & Russell, 1998



Feudal Learning

�28



Feudal Learning

�29 Dayan & Hinton 1993



• Reward Hiding:  

• The managers provide subtasks g for sub-managers  

• Managers only reward the actions if the sub-manager achieves g, 
irrespective of what the overall goal of the task is.  

• Low-level managers learn how to achieve low-level goals even if these 
do not exactly correspond together to the highest level goal. 

Feudal Learning

Dayan & Hinton 1993



• Reward Hiding:  

• The managers provide subtasks g for sub-managers  

• Managers only reward the actions if the sub-manager achieves g, 
irrespective of what the overall goal of the task is.  

• Low-level managers learn how to achieve low-level goals even if these 
do not exactly correspond together to the highest level goal. 

Feudal Learning

• Information Hiding:  

• Managers only know the state of the system at the granularity of their 
own choices of tasks.  

• Information is hidden both ways, upwards and downwards, in terms of 
the choice of sub-tasks chosen to meet the main goal.  

• Managers only reward the actions if the sub-manager achieves g, 
irrespective of what the overall goal of the task is. 

Dayan & Hinton 1993



FeUdal Networks (FUN) for HRL

Vezhnevets et. al 2017



FeUdal Networks (FUN) for HRL

Vezhnevets et. al 2017

• Key Insights:  

• Manager chooses a subgoal direction that maximizes reward 

• Worker selects actions that maxim cosine similarity 

• FuN aims to represent sub-goals as directions in latent state space 

• Subgoals = Meaning behaviours ; Subgoals as actions

s

g

G



FeUdal Networks (FUN) for HRL

Vezhnevets et. al 2017



Moving towards truly scalable RL

"Stop learning tasks, start learning skills." - Satinder Singh, NeurIPS 2018



Related Literature 

• MAXQ 

• HIRO 

• h-DQN 

• Meta Learning with Shared Hierarchies 

• To be completed



Demo





Questions



Extra Slides



Option-Critic

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as

where is the value of executing an action in the context of a
state-option pair defined as:

QU(s, ω, a) = r(s, a) + γ∑
s′�

P(s′�|s, a)U(ω, s′�)

QU : S × Ω × A ℝ

Formulation

�41

All options are available in all states




Option-Critic

QΩ(s, ω) = ∑
a

πω,θ(a |s)QU(s, ω, a)

The option value function is defined as

where is the value of executing an action in the context of a
state-option pair defined as:

QU(s, ω, a) = r(s, a) + γ∑
s′�

P(s′�|s, a)U(ω, s′�)

U(ω, s′�) = (1 − βω,ν(s′�))QΩ(s′�, ω) + βω,ν(s′�)VΩ(s′ �)

is the option-value function upon arrival in a state:where

QU : S × Ω × A ℝ

U : S × Ω ℝ

Formulation

�42

All options are available in all states



