# Learning Options with Interest Functions

### Khimya Khetarpal and Doina Precup Mila-McGill University, Montréal (QC) Canada



(1)

### Motivation

- How to create agents which efficiently represent, learn and use knowledge of the world in continual fashion just like humans?
- While we engage in a task, each skill employed is specialized in attending to only certain states. For example, a skill such as *'stop if the traffic light is red'* is only applicable in states in which a traffic light is present.
- Learn options that represent specialized meaningful skills for lifelong learning.
- **Hypothesis:** Knowing where to apply which skills results in specialization which is key to scaling up.

### Key Contribution

- We introduce the notion of *interest functions*  $I_{\omega} : S \times O \longrightarrow \mathbb{R}^+$ , inspired by [3].
- The state-value function over options that have interest functions is defined as:

$$V_{\Omega}(s) = \sum_{\omega} \pi_{I_{\omega,z}}(\omega|s) Q_{\Omega,\theta}(s,\omega)$$

where  $Q_{\Omega,\theta}$  is the option-value function parameterized by  $\theta$ , and the probability of option  $\omega$  being sampled in in state s is defined as:

$$\pi_{I_{\omega,z}}(\omega|s) = I_{\omega,z}(s) \pi_\Omega(\omega|s) \Big/ \sum I_{\omega,z}(s) \pi_\Omega(\omega|s)$$
 (2)

### The Story So Far..

Temporally extended actions can be formalized as options [1]. A Markovian option  $\omega \in \Omega$  is defined as  $\langle I_{\omega}, \beta_{\omega}, \pi_{\omega} \rangle$ 

- lntra-option policy  $\pi_{\omega}$ ,
- Formination condition  $\beta_{\omega}: S \to [0, 1]$ ,
- $\blacktriangleright$  Initiation set  $I_{\omega} \subseteq S$ .

Recent research has demonstrated that options can be learned automatically and end-to-end for a given task with option-critic architecture [2]. What is missing?

### Interest Gradient Theorem

Given a set of Markov options with stochastic, differentiable interest functions  $I_{\omega,z}$ , the gradient of the expected discounted return with respect to z at  $(s, \omega)$  is:

$$\sum_{s',\omega'} \widehat{\mu}_\Omega(s',\omega'|s,\omega) eta_{\omega,
u}(s') rac{\partial \pi_{I_{\omega,z}}(\omega'|s')}{\partial z} Q_\Omega(s',\omega')$$

where  $\widehat{\mu}_{\Omega}(s', \omega'|s, \omega)$  is the discounted weighting of the state-option pairs along trajectories starting from  $(s, \omega)$  sampled from the sampling distribution determined by  $I_{\omega,z}$ .

### Interest Option Critic

#### Four Rooms Environment: Do options with interest help in transfer?

After 1000 episodes, the goal is randomly moved to one of the cells in the lower right room (shown in red)

### Learning Options with Interest



The IOC agent performs better than OC in the initial stage, then is able to recover much faster after the goal change than the OC agent







**Interest Functions** (top row) at the end of 500 episodes in task 1 for IOC with 4 options. Darker colors represent higher values of the interest function. **Termination Functions** (bottom row) of each option at the end of 500 episodes. Options learnt with interest functions are specialized in *different* regions of the state space.

### Few Shot Option Value Learning

#### Do learned interest functions help re-use of temporal abstraction?

- We then harvest the learned options and use them in the task of learning to navigate to the south hallway
- The policy over options  $(\pi_{\Omega}(\omega|s))$  and option value function  $Q(s,\omega)$  are being learnt from scratch

#### Value Function Propagation



- We experiment with two conditions: using the interest function directly, or thresholding its value and choosing only among options whose interest at a state is higher than the threshold (indicated by a hyper parameter K).
- OC IOC IOC-K0 We hypothesized that if the reward is affected by noise, knowing where to propagate would help IOC more. To test this hypothesis, we repeated the few-shot option value learning with varying degrees of noisy per-step reward.

## Wrap up

- Our approach is capable of learning interest functions, leading to options that are reusable, interpretable, and specialized to different regions of state space.
- **Future Work:** Learn interest functions with function approximation in much larger, richer complicated environments.

### References

- Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.
- Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, pages 1726–1734, 2017.
- Richard S. Sutton, Ashique Rupam Mahmood, and Martha White. An emphatic approach to the problem of off-policy temporal-difference learning. Journal of Machine Learning Research, 17:73:1-73:29, 2016.